What's Different for EUV masks ?

GLOBALFOUNDRIES – Tom Faure, Jed Rankin

EUV Benefits GLOBALFOUNDRIES 7nm

 Multiple Fab Benefits:
 ■ Lithographic Performance

 →Device performance
 ■ Wafer Cycle Time
 →Faster Development
 →Faster Prototyping
 →Faster Production

7nm Cycle Time Impact:

- □ ~60 day reduction in development
- □ ~31 day reduction in production
- Larger benefit at 5nm node with ~20
 % more 193 levels required for optical-only solution

193 Multipatterning EU Samsung, VLSI 2017

EUV Single-exposure

7nm EUV vs. Optical Mask comparison

Physical Design Differences:

		7nm Optical	7nm EUV	5nm EUV
Contacts / Vias	Number of Masks per layer	2-4	1	1
	Tone	CP	CN	CN
	Primary Feature size on Mask (4x)	250nm	70nm	55nm
	SRAFs (4X)	50-60nm opaque	None *	30nm clear
	Number of Masks	3	1	1-2*
Cuts / Metals Fin/Gate (5nm)	Tone	CP/CN	CN	CN + CP
	Minimum Feature size on Mask (4x)	200nm	50 nm	45nm
	SRAFs	54nm opaque 60nm clear	None	24nm clear 30nm opaque

EUV Contact

EUV Metals

EUV allows design relaxation to Circa 32/28 nm

- Bidirectional Metals Allowed
- Relaxed local density (minimum SRAF)

□ Simplified OPC (still requires MBOPC)

 \rightarrow ILT not needed for 7nm EUV, but may be used

Unique EUV mask requirements → MBMW Benefit for 7nm, required for 5nm

- Resolution (40nm \rightarrow 24nm)
- Line Edge Roughness ($4nm \rightarrow 2nm$)
- Local CDU (2.5nm \rightarrow 1.5nm)
- Image Placement (2.5nm \rightarrow 1.5nm)

Design

- Shot Count (ILT)
- Data Density (SRAF)

7nm Requirements 5nm Requirements

MBMW tools originally developed with expectations of high shot-count and data density

EUV allows relaxation of shot/vertex density \rightarrow Initial EUV layers will have no SRAF, less fill, no PRAF

CA Mask Comparison

EUV CA: PCAR 4.9% Open Area

Opt CA-3 : NCAR 91% Open Area

Opt CA-2 : NCAR 92% Open Area

Opt CA-4: NCAR 85% Open Area

Optical Mask Design

EUV Mask Design

M1 Mask Comparison

EUV M1: **PCAR (PTD)** 49% Open Area

Opt M1-3: NCAR 69 % Open Area

Opt M1-2: **NCAR** 74% Open Area

Optical Mask Design

EUV Mask Design

EUV Specific Mask Challenges

Materials & Structure:

- □ Importance of Blank defects (mirror)
- □ Introduction of Ta and Ru for RIE & repair
- □ Black-Border & Out-Of-Band suppression
- Backside and Cleanliness
- □ Flatness & Thickness requirements
- □ Lack of Pellicle at HVM introduction
- ❑ New (Thinner) absorbers (post 7nm) →repair, integration and durability challenges

Equipment

 □ MBMW for CD, I/P, LER LCDU performance
 □ Use of Non-actinic inspection (DUV or SEM)
 □ Limited AIMS availability (lead time)
 □ Anamorphic Scaling (timing= beyond 5 nm) →minimal impact expected (handled during fracture)
 □ Equipment extendability (Inspection, AIMS, writers, repair)

EUV Specific Mask Data Challenges

Current:

- Loss of Hierarchy / Jobdecking (Flare, Radial Azimuthal reflection)
- □ MPC (Dose modulation) for Resolution
- Blank Defectivity Management & Pattern-Shift for defect avoidance
- □ Unique e-beam corrections

• Future:

- Data Density
- □Fracture / prep for MBMW or advanced writers →Increased off-board correction (MPC, CD & I/P ebeam corrections)
- □ Migration toward ILT and curvilinear designs
 - →Because we can (data and writers) not because it's needed (yet)

Radial X-Y Corrections

E-beam Density Effect Corrections

MDP Flow comparison & Complexity

Positional dependence within EUV field:

- EUV flare
- Radial exposure slit
- Reflective Mask

Unique Data challenges:

- Additional MDP complexity
 Creation of Flare Map
 Positional awareness (X-Y)
 Requires concurrent data
- Loss of hierarchy
- No repeated die (jobdeck)
- Future Anamorphic

Summary

•EUV is <u>real</u>:

□ Benefits are <u>real</u>: *Imaging quality, Cycle Time*

□Challenges are <u>real</u>: Scanner-throughput ,Mask–defectivity, EPE, Resist-stochastics

Changes to Data Infrastructure and processing are required
 OPC, MPC, Jobdecking, Pattern-shifting (defects), Image shifting, fracture, anamorphic scaling....

→ Solutions exist. Data will not limit EUV's success.

