The Need for Speed: Computations for EUV Lithography

HJL Lithography

eBeam Initiative SPIE 2019

26 February 2019

EUV lithography implemented at different node than originally conceived

Summary

EUVL is the only viable solution for 45 nm

- Integration of all EUVL modules demonstrated feasibility of the EUVL technology
- Mask costs are affordable defect mitigation and repair methods demonstrated
- Suppliers are engaged to commercialize the technology
- Remaining technical challenges have been identified and are actively being addressed
- Commercialization emphasis is required

Gwyn and Silverman, "EUV Lithography Transition from Research to Commercialization," Photomask Japan, 2003

Minimum pitch = 160 nm

HJL Lithography

Gwvn:PMJ:4/17/03:27

Horizontal-vertical bias due to oblique illumination

Erdmann, et al.

"Characterization and mitigation of 3D mask effects in extreme ultraviolet lithography." *Advanced Optical Technologies* 6, no. 3-4 (2017)

HJL Lithography

Biases in-between

- Ring-field optics have long been used in scanning lithography
 - Reduced aberrations

Exposure field

Mask 3D effects were recognized early: Pitch dependence for focus

Pei-Yang Yan,

"Understanding Bossung Curve Asymmetry and Focus Shift Effect in EUV Lithography," BACUS Symposium on Photomask Technology,

2001

Fig. 2. Focus shift as a function of pitch for 30nm lines. The light incident angle is 5-degree.

Pattern placement errors through focus

Pattern shift through focus Pitch Center Offset (nm) 1 -36 -42 0.5 -48 --50 0 -60 -0.5 ---80 -100 -1 -60 60 Focus (nm)

L. Van Look, et al., "Mask 3D Effect Mitigation by Source Optimization and Assist Feature Placement" (2016)

S. Raghunathan, et al., "Characterization of Telecentricity Errors in High-Numerical-Aperture Extreme Ultraviolet Mask Images," 3-beams (2014)

This is new: Overlay needs to be considered when employing process window-aware OPC!

Mask 3D effects drive need for complex illumination

T. Last, et al. "Illumination pupil optimization in 0.33-NA extreme ultraviolet lithography by intensity balancing for semi-isolated dark field two-bar M1 building blocks," JM3 (2016)

HJL Lithography

Image blurring due to mask 3D effects

21 nm hp image blurring example

HJL Lithography

Need to maintain normalized image log-slope (NILS) to address LER

Freeform illumination is now available for EUV lithography

Aberrations are significant for EUV lithography

 $0.2 \text{ nm} = 15 \text{ m}\lambda$

Winfried Kaiser, Semicon Korea, 2018

Complex resist physics

HJL Lithography

Sub-resolution assist features (SRAFs) for EUV lithography

HJL Lithography

Mask SEM image

Design layout Deniz Civay, et al., "Subresolution assist features in extreme ultraviolet lithography," JM3 (2015)

Developed resist on-wafer SEM image

eBeam Initiative SPIE 2019

13

Application of SRAFs significantly reduces range of focus shifts

Pei-Yang Yan,

"Understanding Bossung Curve Asymmetry and Focus Shift Effect in EUV Lithography," BACUS Symposium on Photomask Technology, 2001

Fig. 2. Focus shift as a function of pitch for 30nm lines. The light incident angle is 5-degree.

Application of SRAFs significantly reduces range of focus shifts

~40% reduction in best focus variation

Pei-Yang Yan,

"Understanding Bossung Curve Asymmetry and Focus Shift Effect in EUV Lithography," BACUS Symposium on

Photomask Technology,

2001

Fig. 2. Focus shift as a function of pitch for 30nm lines. The light incident angle is 5-degree.

The future is curvilinear

K. Hooker, A. Kazarian, X. Zhou, J. Tuttle, G. Xiao, Y. Zhang, and K. Lucas "New methodologies for lower-K1 EUV OPC and RET optimization." Proc. SPIE Vol. 10143 (2017)

HJL Lithography

Many geometries in today's chips creates big computational problem

 AMD's Ryzen 7 microprocessor has 4.8B transistors

Ring-field EUV optics kills hierarchy – another computation complexity

Exposure field

HJL Lithography

Flare also breaks hierarchy

HJL Lithography

Current situation

- The physics of EUV lithography necessitates computations more complex than those encountered in optical lithography
 - Significant mask 3D effects
 - Multiple manifestations
 - Plane of best focus dependent on pitch and position within arrays
 - Image blur
 - Pattern placement shifts
 - Variations across the slit
 - Flare and aberrations
 - Complex resist behavior
- Support needed for curvilinear features
- Large chip sizes at the leading edge creates need for fast computational capabilities

Lithography simulations are amenable to parallel computations

HJL Lithography

Lithography simulations are amenable to parallel computations

- Use of multiple servers with multiple-core processors are used routinely for optical lithography
- Example
 - 64 core microprocessors
 - 100 servers
 - 6400 cores
- OPC computations can still take 24 hours or more for optical lithography
- Inverse lithography calculations can take so long that they are often applied only to select patterns
- Greater computational capability will be needed for EUV lithography

Lithographic calculations extensively involve FFTs

HJL Lithography

Parallel computations: New paradigm with GPUs

Nvidia Volta GPU: 5120 cores

Curvilinear shapes: practical with multi-beam mask writing

Return to raster scanning

IMS MBMW-101

Patterns created with Nuflare MBM-1000

HJL Lithography

Summary

- Future OPC/RET for EUV lithography will necessarily be very complex
 - Mask 3D effects
 - Increases need for SRAFs
 - Resist physics
- Large chips manufactured with leading-edge lithography necessitate powerful computational and mask-making capabilities
- Fortunately, the infrastructure is becoming available to support solutions
 - GPU's can provide a path to a much higher degree of parallel computing
 - EUV exposure tools now have freeform pupil shaping capabilities
 - Multiple-beam mask writers enable curvilinear patterns