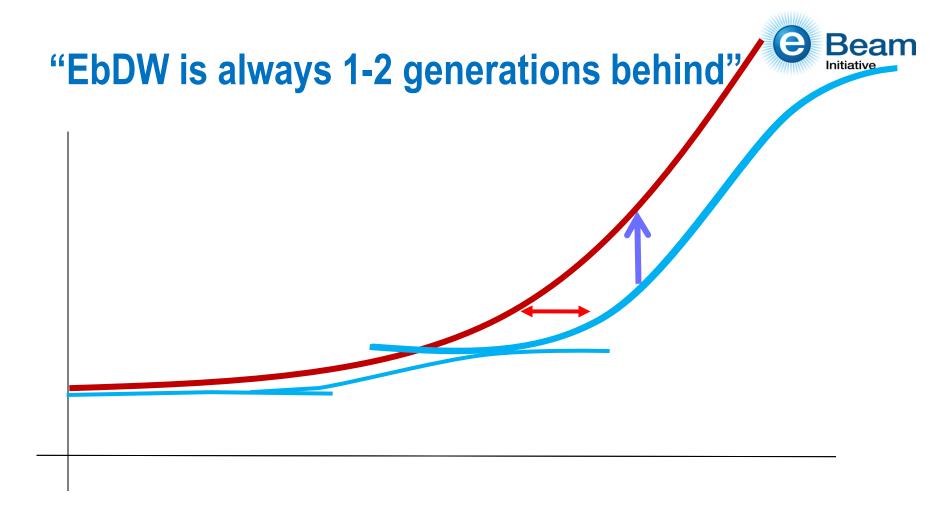
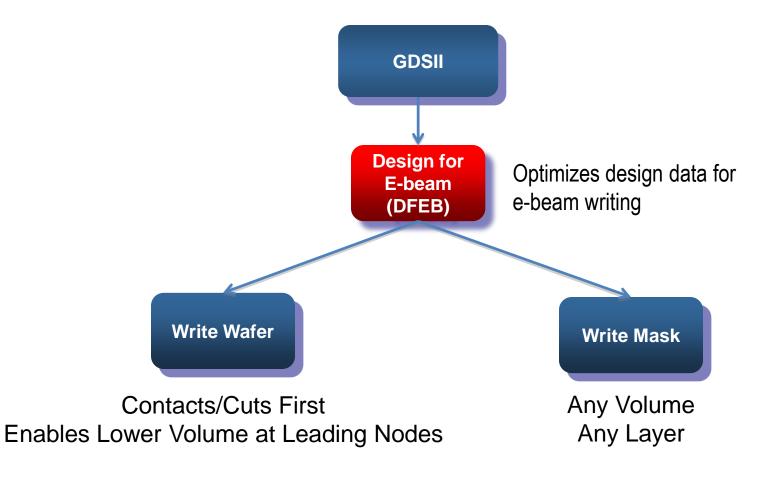


SPIE Advanced Lithography 2011 paper 7970-1


e-Beam Direct Write of Wafers

Aki Fujimura, D₂S, Inc


If you have small S-Curves, you have to stack them one after another If you are blessed with a big S-Curve, you get to ride it for a long time

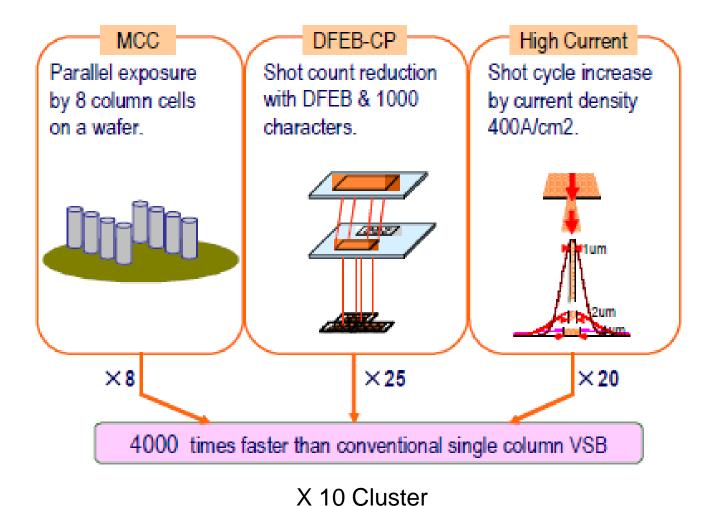
But that means it HAS kept up with Moore's Law... Just needs to catch up

Direct-Write or Mask? Either Way, e-Beam Writes All Chips!

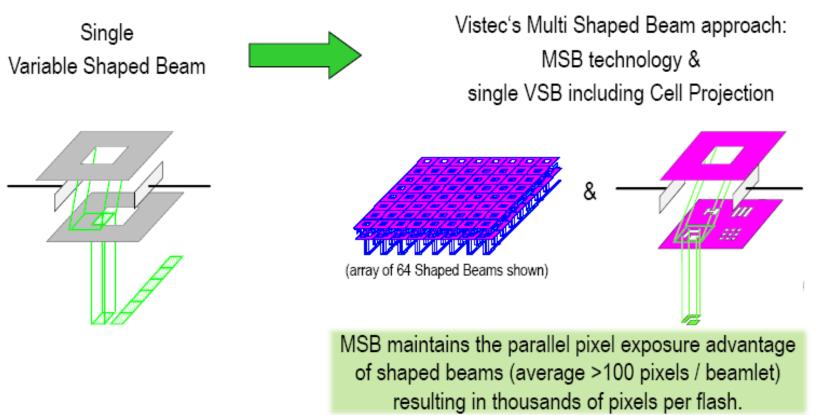
Similar but different...

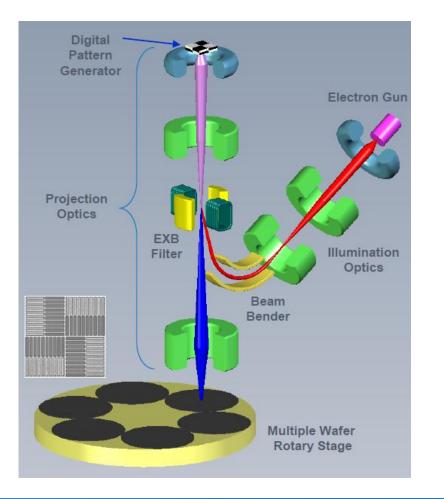
Need	Mask	Wafer
Size	4x	1x
Accuracy	Highest (MEEF)	High (less source of error)
Data volume	Huge (SRAF)	Huge x 10 (no OPC; whole wafer)
Write Time	8-40 hours	1 ~ 100 WPH
Writing Space	Rectangle (efficient)	Circle (inefficient)
# passes	2, 4 (accuracy)	1 (write time)
Characters	Circles	1000's useful
Market now	Solid but flat	Zero but big potential

NIL Mask Master is a blend of both


eBeam Speed-Up techniques

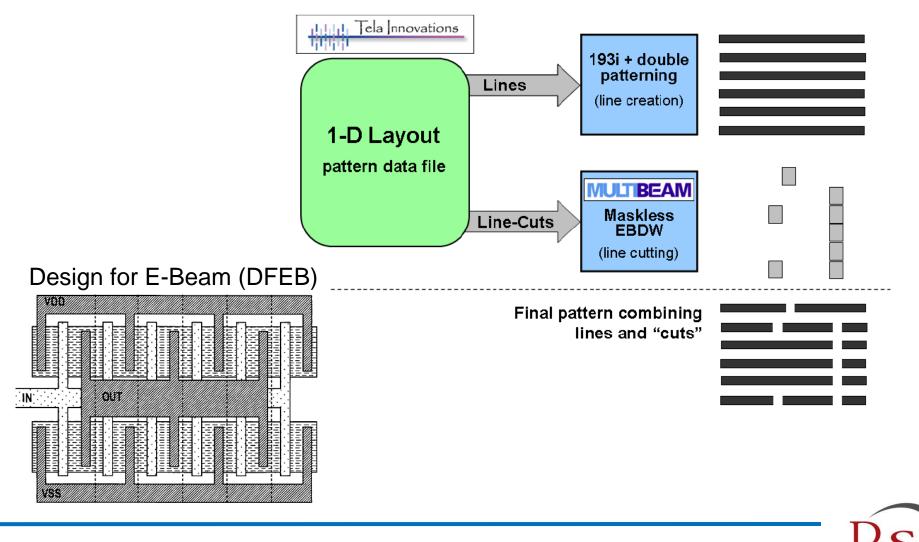
Split Beam	Character Proj.	General
		Multiple Source
		Clustering
		Source Current
	00	Resist Sensitivity
	Regular Design Rules	
	Borodovsky Method	
DFEB = Data Compression	DFEB = 10X Speed-up	Other Limits:
		Stage
Maximum flexibility in	Maximum transfer of energy for all shapes	Data Transfer
shape being written		Calibration
		Settling Time


Advantest MCC8 Realistic with limited budget is to extend

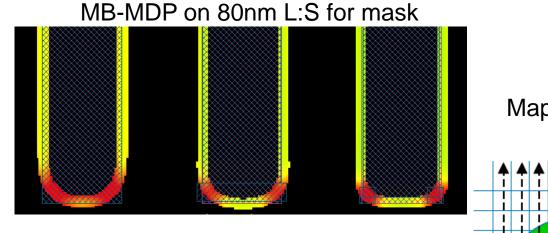

Vistec MSB Hybrid like Prius is the best way to transition

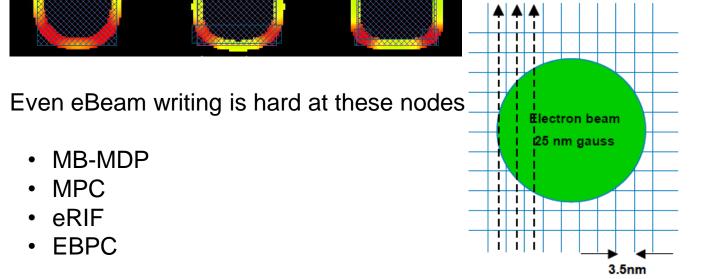
IMS, KLA-T REBL, Mapper, Multibeam Take on the bigger S-Curve

Multiple beams individually controlled by various means


Innovation in stage, data pipeline and column taken as a system

Expensive but worth it

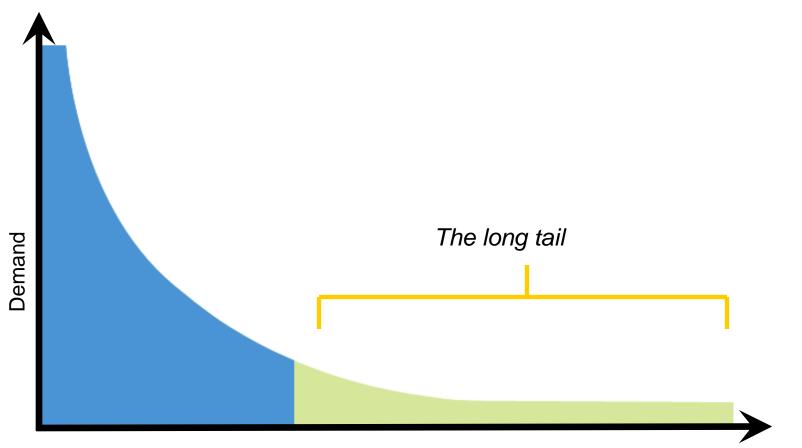

Design to Manufacturing collaboration Focus to succeed : The "Borodovsky method"



Example (line edge biasing): edge position ½ pixel shifted

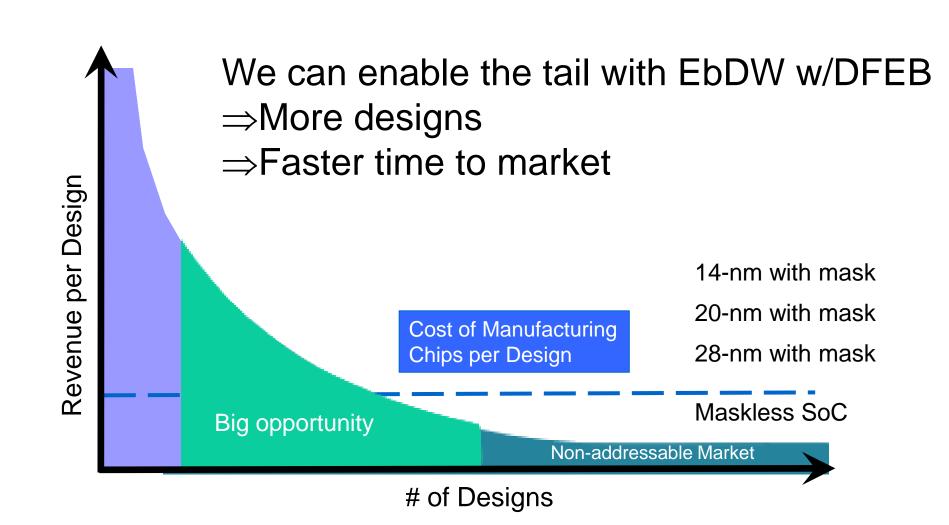
ASELTA, CEA/Leti, D₂S, EQUIcon, Fraunhofer, Technolution, TSMC Software help is essential for this resolution

Mapper data prep for 3.5nm resolution


Themes and Approaches EbDW : we can do this....

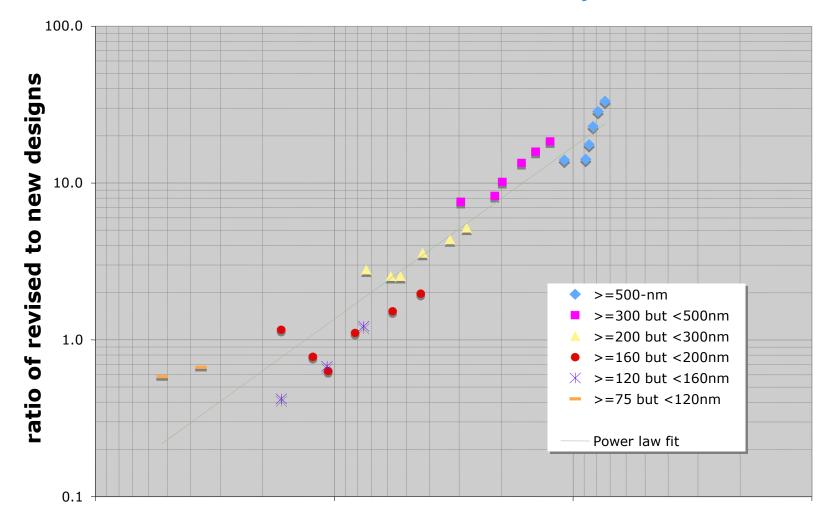
- Monetize from the Existing Mask Market
 - D₂S, IMS, SEMATECH, Vistec
 - "Current density advances will not be enough" Tom Faure, IBM
- EbDW for high volume with clusters
- EbDW can also enable the long tail
- Government funding is deserved
 - EbDW will help boost design starts
 - That's good for everyone in the supply chain

Enabling the Long Tail of SoCs



Popularity Rank

The Tail is Getting Shorter



Derivatives have low design cost

10x reduction in mask cost increases derivatives by 10x

Copyright (c) 2007 by VLSI RESEARCH INC. All rights reserved. Reprinted with permission from VLSI RESEARCH INC.

Electron Beam Direct Write

- Great for R&D : process, design, systems
- Great for lower-volume : minimal mask cost
- Volume Production? : 50 WPH cluster in 2014

• Please attend these great sessions and learn about the potential of e-beam technologies

Session 3: Maskless Lithography I Date: Tuesday 1 March Time: 1:20 PM - 3:10 PM

Session Chairs: Hans Loeschner, IMS Nanofabrication AG (Austria);

Timothy R. Groves, Univ. at Albany

E-beam lithography development, outlook, and critical challenges (Invited Paper)

Paper 7970-9 Time: **1:20 PM - 1:50 PM** Author(s): Hans C. Pfeiffer, HCP Consulting Services (United States)

MCC8: throughput enhancement of EB direct writer

Paper 7970-10 Time: **1:50 PM - 2:10 PM** Author(s): Hideaki Komami, Masaki Kurokawa, Akio Yamada, Advantest Corp. (Japan)

eMET: 50 keV electron multibeam mask exposure tool

Paper 7970-11 Time: **2:10 PM - 2:30 PM** Author(s): Christof Klein, Jan Klikovits, Hans Loeschner, Elmar Platzgummer, IMS Nanofabrication AG (Austria)

Scanning exposures with a MAPPER multibeam system

Paper 7970-12 Time: 2:30 PM - 2:50 PM

Author(s): Bert J. Kampherbeek, Christiaan van den Berg, Vincent Kuiper, Niels Vergeer, Stijn Bosschker, Thomas Ooms, Alexandra Tudorie, Remco J. Jager, MAPPER Lithography (Netherlands); Sjoerd Postma, DEMCON (Netherlands); Guido de Boer, MAPPER Lithography (Netherlands)

Multishaped beam: development status and update on lithography results

Paper 7970-13 Time: 2:50 PM - 3:10 PM

Author(s): Ines A. Stolberg, Matthias Slodowski, Hans-Joachim Doering, Wolfgang H. Dorl, Vistec Electron Beam GmbH (Germany)

Session 8: Maskless Lithography II Date: Wednesday 2 March Time: 3:30 PM - 5:40 PM

Session Chairs: Lloyd C. Litt, SEMATECH Inc.; Laurent Pain, CEA-LETI (France)

Fast mask writer: technology options and considerations (Invited Paper)

Paper 7970-32 Time: 3:30 PM - 4:00 PM

Author(s): Lloyd C. Litt, SEMATECH Inc. (United States); Timothy R. Groves, Univ. at Albany (United States); Gregory P. Hughes, SEMATECH, Inc. (United States)

IMAGINE: an open consortium to boost maskless lithography take off: first assessment results on MAPPER technology

Paper 7970-33 Time: 4:00 PM - 4:20 PM

Author(s): Laurent Pain, Serge V. Tedesco, Beatrice Icard, Mickael Martin, Christophe Constancias, Lab. d'Electronique de Technologie de l'Information (France); Bert J. Kampherbeek, MAPPER Lithography (Netherlands)

Influence of massively parallel e-beam direct-write pixel size on electron proximity correction

Paper 7970-34 Time: **4:20 PM - 4:40 PM** Author(s): Shy-Jay Lin, Taiwan Semiconductor Manufacturing Co. Ltd. (Taiwan)

Data path development for massive electron-beam maskless lithography

Paper 7970-35 Time: **4:40 PM - 5:00 PM** Author(s): Faruk Krecinic, Jack J. Chen, Shy-Jay Lin, Burn J. Lin, Taiwan Semiconductor Manufacturing Co. Ltd. (Taiwan)

EBDW to complement optical lithography for 1D GDR patterning

Paper 7970-36 Time: **5:00 PM - 5:20 PM** Author(s): David K. Lam, David Liu, Multibeam Corp. (United States); Michael C. Smayling, Tela Innovations, Inc. (United States); Ted Prescop, Multibeam Corp. (United States)

Model-based mask data preparation and impact on resist heating

Paper 7970-37 Time: **5:20 PM - 5:40 PM** Author(s): Aki Fujimura, D2S, Inc. (United States); Takashi Kamikubo, NuFlare Technology, Inc. (Japan); Ingo Bork, D2S, Inc. (United States)

Session 10: Maskless Lithography III

Date: Thursday 3 March Time: 10:20 AM - 12:10 PM Session Chairs: Lloyd C. Litt, SEMATECH Inc.; Hans Loeschner, IMS Nanofabrication AG (Austria)

New advances with REBL for maskless high-throughput EBDW

lithography (Invited Paper)

Paper 7970-43 Time: 10:20 AM - 10:50 AM

Author(s): Paul Petric, Chris Bevis, Mark A. McCord, Allen Carroll, Alan D. Brodie, Upendra Ummethala, Luca Grella, Regina Freed, KLA-Tencor Corp. (United States)

Large-scale eRIF implementation for sub-22-nm e-beam lithography Paper 7970-44 Time: 10:50 AM - 11:10 AM

Author(s): Luc Martin, Lab. d'Electronique de Technologie de l'Information (France); Serdar Manakli, Sébastien Bayle, ASELTA Nanographics (France); Kang-Hoon Choi, Manuela S. Gutsch, Fraunhofer-Ctr. Nanoelektronische Technologien (Germany); Laurent Pain, Lab. d'Electronique de Technologie de l'Information (France)

Demonstration of real-time pattern correction for high-throughput

maskless lithography

Paper 7970-45 Time: 11:10 AM - 11:30 AM

Author(s): Marco J. Wieland, Ton van de Peut, Martijn Sanderse, MAPPER Lithography (Netherlands); Edwin Hakkennes, Nol Venema, Ard Wiersma, Mark Hoving, Sijmen Woutersen, Technolution B.V. (Netherlands)

EBPC for multibeams low-kV electron projection lithography

Paper 7970-46 Time: **11:30 AM - 11:50 AM** Author(s): Jérôme Belledent, Sebastien Soulan, Laurent Pain, Commissariat à l'Énergie Atomique (France)

Fast characterization of line-end shortening and application of novel LES

correction algorithms in e-beam direct write

Paper 7970-47 Time: 11:50 AM - 12:10 PM

Author(s): Martin Freitag, Manuela S. Gutsch, Kang-Hoon Choi, Christoph K. Hohle, Fraunhofer-Ctr. Nanoelektronische Technologien (Germany); Michael Krüger, EQUIcon Software GmbH Jena (Germany); Ulf Weidenmüller, Vistec Electron Beam GmbH (Germany)

It's time to make it happen...

- EbDW will scale, once it catches a node
- Need to collaborate and coordinate even more
 - Too many teams in the league is diluting the quality and funding
 - Column, stage, data-path and integration should share
- EbDW projects need more funding
 - Will help boost design starts at the leading edge nodes
 - Good for everyone in the supply chain
 - Spurs more silicon innovation
 - Fuels more systems innovation

