

Recent Progress of Electron Multi-Beam Mask Writer

Elmar Platzgummer

IMS Nanofabrication AG Vienna and Brunn am Gebirge Austria

Optical Proximity Correction		Inverse Lithography Technology	
45 nm	28 nm	14 nm	7 nm
node	node	node	node
without	normal	normal	ideal
OPC	OPC	ILT	ILT
		(<u></u>)	0

Monterey September 29, 2015

eBeam Initiative Meeting at BACUS

Source: adopted from Jin Choi et al. / Samsung, Photomask Japan 2009

Demand: < 1day Mask Write Time

⇒ Use of multi-beam solution is mandatory for future nodes!

- Small Beam Shape: 20nm, 10nm
- Designed for high resist dose to ensure small line edge roughness
- Write time independent of pattern complexity, incl. Non- Manhattan curvilinear patterns

Multi-Beam Mask Writer Tool Principles

IMS production facility at Brunn am Gebirge (near border of Vienna) 5

□ 450 m² clean room area, 550 m² presently being added

Multi-Beam Mask Writer Alpha Tool

Multi-Beam Column on air-bearing Stage Platform

Monterey September 29, 2015

- Exposure of 128mm x 104mm field on 6" mask blank (scanning stage)
 - Stripe length: 128 mm
 - Stripe width: 80 µm
 - # of stripes: 1300

- Stage velocity: 3.5 mm/s
- ⇒ Write time: 13.2 h

Multi-Beam Mask Writer Corrections

Special Corr.

PEC	Proximity Effect Corrections	fully implemented
FEC	Fogging Effect Corrections	fully implemented
LEC	Loading Effect Corrections	fully implemented
GMC	Grid Matching Corrections	fully implemented
GCD	Global CD Corrections	fully implemented
CEC	Charging Effect Corrections	available, tests ongoing
Defec	tive Beam Corrections	fully implemented
Stripe Butting Corrections		fully implemented
Drift Corrections (auto calibration)		fully implemented
More.		

MBMW exposure in negative resist

32nm half-pitch & iso line nCAR (negative chemically amplified resist) exposure dose: 80µC/cm²

with multi-beam proximity effect and fogging effect corrections

Monterey September 29, 2015

32nm and 30nm half-pitch & iso lines pCAR (positive chemically amplified resist exposure dose: 100 µC/cm² **24nm iso line** in Non-CAR (ZEP520A) exposure dose: 170 µC/cm²

etched into MoSi

Monterey September 29, 2015

	Status: September 2015
Mask minimum Primary Feature Size	30 nm hp
LCDU – Local CD Uniformity 3sigma	0.6nm
Stripe Boundary CD Uniformity 3sigma	1.0 nm
GCDU – Global CD Uniformity 3sigma	1.1 nm
Local Registration 3sigma	0.9nm
Global Registration 3sigma	1.7 nm

- □ The overall writing architecture works well **multi-beam is real** !
- The multi-beam mask writer lithography results obtained so far look promising, further improvements are in progress.
- Beam and platform stability are generally good, more automation will help user friendliness and fab integration.
- The main advantages of the multi-beam mask writer come from
 (i) complex patterns, (ii) small feature sizes, and (iii) high dose.
- 2015: Multi-Beam Mask Writer Beta Tools
 2016: Multi-Beam Mask Writer HVM Tools

The world's 1st Electron Multi-Beam Mask Writer

pCAR 100 µC/cm² Thank You for Your Attention !

30 nm

HP & iso

Monterey September 29, 2015