

Recent results of Multi-beam mask writer MBM-1000

Hiroshi Matsumoto, Hiroshi Yamashita, Hideo Inoue, Kenji Ohtoshi, Hirokazu Yamada

June 22, 2016

NFT's mask writer roadmap 2016

Device	Production	2016	2017	2018	2019	2020	Remarks	
ITRS 2013	Logic	N10	N7	N7	N5	N5	Node name	
	DRAM	22	20	18	17	15	Bit line hp (nm)	
	Flash	14	13	12	12	12	Gate hp (nm)	
Mask Writer	EBM-9000	2013					N14, 10	
	EBM-9500	2015					N7	
	MBM-1000		2017				N5	
	MBM-2000				2019		N3	

- NuFlare keeps on releasing leading-edge mask writers every two years to support semiconductor industry for more than 15 years.
- We will launch MBMW to comply with ITRS roadmap.
- MBM-1000 is to be released in 2017 for N5.
- **MBM-2000** will be coming in **2019** for N3.

June 22, 2016 eBeam Init

NUFLARE

History of EB writer development

The 3rd technical innovation for futuristic mask writing

NUFLARE

June 22, 2016

NuFlare is evaluating MBM-1000 alpha tool.
Assembly of beta tool is almost completed.

• Beam on planned at the end of July.

	VSB	MB			
Key technologies	Single Variable Shaped BeamHigh current densityHigh speed deflection	 Massive number of beams High-speed data path and BAA Gray beam writing 			
Advantage	 Best cost performance for Med- Low pattern density/doses 	Constant write time for all pattern densitiesEnables high doses			
Limitation	 High doses and pattern densities impact write time 	 Not cost effective for Med-Low pattern densities and doses Narrow process window due to gray beam 			
	June 22, 2016 eBeam Initiative Taiwan seminar 5				

VSB vs. pixelated gray beam

Strategy in design

Resolution

- 10 nm beam size for accurate edge position control by gray beam writing
- Low-aberration optics
- Writing accuracy
 - 10-bit dose control
 - 0.1 nm CD/position resolution
 - PEC/FEC/LEC calculated based on physical models
 - Multi-pass writing
- Throughput
 - Massive number of beams with current density 2A/cm²
 - Total beam current is 500 nA, which is equal to beam current at maximum shot size in EBM-9000.
 - High-speed BAA and data-path with real-time inline processing

Tool configuration (EBM, MBM)

	Item	EBM-9500	MBM-1000	
	Accel. voltage	50 kV	50 kV	
	Cathode	1200 A/cm ²	2 A/cm ²	
<u> </u>	Beam current	500 nA @ max shot size	500 nA in total	
	Beam blur	r	< r	
	Beam size	VSB (\leq 250 nm)	beamlet (10 nm x 10 nm)	
	Field size	90 µm	512 x 512 beamlets in 82 µm x 82 µm area	
	Stage	Frictional drive with variable speed	Air bearing stage with constant speed	
	Data format	VSB12i, OASIS.MASK	MBF (polygon support), VSB12i, OASIS.MASK	
NUFL	Corrections for writing accuracy	PEC/FEC/LEC, GMC, CEC, GMC-TV, TEC	PEC/FEC/LEC, GMC, CEC, GMC-TV, EUV-PEC	

Correction function

June 22, 2016

UFL/MRE

Correction function

MBM is capable of all corrections done by inline and realtime.

- New inline correction function provides
 - PEC, EUV-PEC, fidelity optimization

NUFLARE

Long-range correction (LEC/FEC) and beam-by-beam optimization.

June 22, 2016 eBeam Initiative Taiwan seminar

Inline/realtime data path

Standard specification

Specification	EBM-9000	EBM-9500	MBM-1000	
Global Image Placem [nm 3σ]	3.0	2.1	1.5	
	Global [3σ]	3.0	2.5	1.5
CD Uniformity [nm]	Local [3 0]	1.3	1.3	1.0
Beam blur	r	÷	< r	
Mask write time [hours (130mmx100mm)	-	-	12 @ 75 µC/cm²	
Beam size [nm]	VSB (0.1 to 250)	VSB (0.1 to 250)	10	
Current density [A/cm	800	1200	2	

Throughput relative to Shot Count

MB is advantageous with shot counts > ~200 Gshot/pass.

NUFLARE

Throughput relative to Dose

MB is advantageous for

- Shot count > 200 G/pass and
- Resist sensitivity > 75 uC/cm²

Patterning resolution test

20 nm hp resolved within 70 um sq. area.

 Patterning quality was degraded at the area closed to perimeter of 82 um field

	X/Y pos. [um]	-35	-25	0	+25	+35
5	+35					
	+25					
	0					
	-25					
	-35					

Patterning resolution test

Resist images using ZEP520A 50 nm thickness @ 160 uC/cm²

MBM shows better than hp 20 nm resolution.

June 22, 2016

NUFLARE

Local area writing by Alpha tool: Dec. 2015
 Demonstrated better resolution than EBM-9500

Test pattern full area writing : Mar. 2016
 Beta tool beam on : Jul. 2016
 Customer pattern demo writes : Oct. 2016 Upgrade to high-speed data path : Q1 2017

First HVM delivery : Q4 2017

NuFlare, Integrating your needs...

THANK YOU !!!

