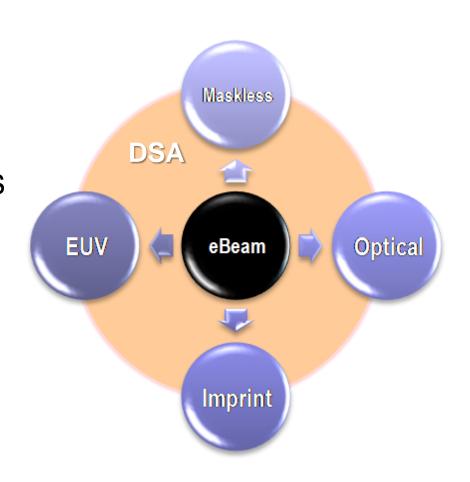


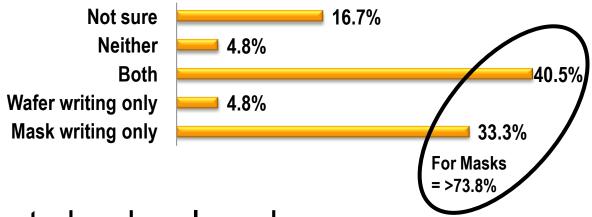
PMJ 2013: Future of Mask Pattern Generation

Aki Fujimura, CEO


D₂S is the managing sponsor of:

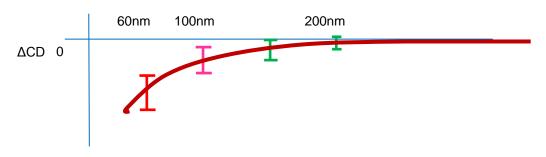
Future is Bright for eBeam Technologies

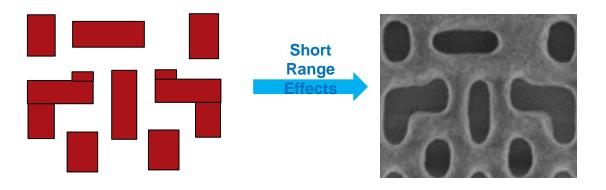
- DSA requires accurate guide patterns written by eBeam
- EUV requires eBeam masks
- Imprint requires eBeam masks
- Multibeam promising
- eBeam mask simulation required at 16/14nm – VSB or Multibeam



Will the Future be Multibeam?

Yes, and...

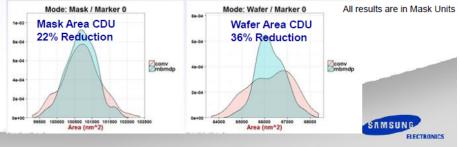

- Ecosystem has to be developed
- Regardless of whether VSB or Multibeam
 - eBeam physics requires eBeam mask simulation at 16/14nm

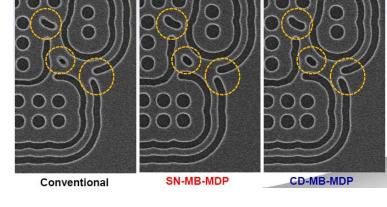


Why eBeam Mask Simulation? eBeam physics when there's no room for error

1D Linearity Effect

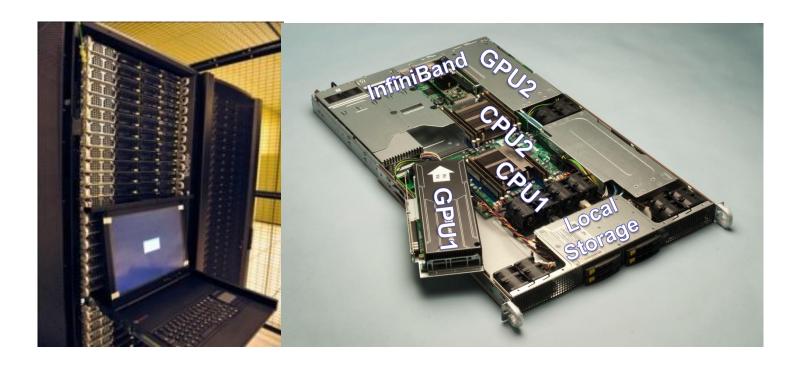
2D Rounding Effect




eBeam Simulation Improves Mask CDU

Simulation Results

 MB-MDP method shows improved CDU of area and line-width compared to conventional MDP. Impact at wafer level increased by MEEF.


Conventional MDP CDU (1 σ)		MB-MDP CDU (1 σ)		Reduction	
Mask	Wafer	Mask	Wafer	Mask	Wafer
538	969	420	625	22%	36%
554	1175	418	557	25%	53%
531	1178	415	568	22%	52 %
493	742	380	495	23%	33%
0.96	N.A.	0.62	N.A.	35%	N.A.
0.78	N.A.	0.55	N.A.	29%	N.A.
1.73	N.A.	1.47	N.A.	15%	N.A.
1.26	N.A.	0.89	N.A.	29%	N.A.
	Mask 538 554 531 493 0.96 0.78 1.73	Mask Wafer 538 969 554 1175 531 1178 493 742 0.96 N.A. 0.78 N.A. 1.73 N.A.	Mask Wafer Mask 538 969 420 554 1175 418 531 1178 415 493 742 380 0.96 N.A. 0.62 0.78 N.A. 0.55 1.73 N.A. 1.47	Mask Wafer Mask Wafer 538 969 420 625 554 1175 418 557 531 1178 415 568 493 742 380 495 0.96 N.A. 0.62 N.A. 0.78 N.A. 0.55 N.A. 1.73 N.A. 1.47 N.A.	Mask Wafer Mask Wafer Mask 538 969 420 625 22% 554 1175 418 557 25% 531 1178 415 568 22% 493 742 380 495 23% 0.96 N.A. 0.62 N.A. 35% 0.78 N.A. 0.55 N.A. 29% 1.73 N.A. 1.47 N.A. 15%

BACUS 2012 Paper 8522-04 by Byung-Gook Kim, Samsung

eBeam Mask Simulation Accuracy in Reasonable Time with GPGPU acceleration

Source: D2S Computational Design Platform

Summary

- Parallel track with VSB and Multibeam
- Whether Multibeam or VSB, eBeam mask simulation is required at 16/14nm logic nodes
- Improved mask CDU leads to better OPC models
- GPGPU acceleration improves accuracy-runtime tradeoff

Future of Mask Pattern Generation Depends on eBeam Mask Simulation

