
PMJ 2013 Panel Discussion

Future mask patterning technologies in the next decade: searching for the best mix solution

April 18th, 2013

Question: What will be the toughest hurdle in mask making?

- "No one has been successful in predicting what the litho is going to be like in 10 years"
 ~ASML W.Siegle (cited by DNP Hayashi-san in
 - ~ASML W.Siegle (cited by DNP Hayashi-san in his key note speech)
- Talk about the next year and the devil will laugh
 ~ Japanese saying
- But we know one organization is doing this job for us to predict future for years: ITRS

ITRS 2012

Year	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
DRAM 1/2 pitch	28	25	23	20	18	16	14	13	11	10	8.9
MPU 1/2 pitch	27	24	21	19	17	15	13	12	11	9.5	8.4
Mask miminum featu	re size [nm]									
Optical (SRAF)	56	50	44	40	40	40	40	40	40	40	40
EUV	78	70	62	55	49	44	39	35	31	28	25
NIL_	28	25	22	20	18	16	14	12	11	10	9
ML ²	_ 11 _	۔ ماء	14 0		:		1.	. h	. .	1	.8
		me	re	au	ıreı	me	nts	5 D6	e n	1et	
CDC Call (AII '										
CDI Can a											.6
											.0
<u>optik</u> ∎											
ev by or										0.9	.0
by or	ie v	writ	ting	j a	rch	ite	ctu	re	?		.0 .8
EUV by or ML2	ie v	writ	ting	j a	rch	ite	ctu	re	?		.0 .8
EUV by or ML2 Data Volume[GB]	2.1	vrit	1.7	1.6	1.5	1.3	<u>ctu</u>	re'	1	0.9 2970	.0 .8 0.8
EUV NIL by or ML2 Data Volume[GB] Optical	2.1	1.9 2580	1.7 2970	1.6 2970	1.5 2970	1.3 2970	2970	1.1 2970	2970	0.9 2970	.0 .8 0.8
EUV NIL by or ML2 Data Volume[GB] Optical EUV	2.1 2220 1300	1.9 2580 1700	1.7 2970 2100	1.6 2970 2600	1.5 2970 3300	1.3 2970 4200	2970 5200	1.1 2970 6600	2970 8300	0.9 2970 10000	.0 .8 0.8 2970 13000
EUV NIL by or ML2 Data Volume[GB] Optical EUV NIL	2.1 2220 1300 940 820	1.9 2580 1700 1200	1.7 2970 2100 1500	1.6 2970 2600 1900	1.5 2970 3300 2400	1.3 2970 4200 3000	1.2 2970 5200 3800	1.1 2970 6600 4700	2970 8300 5900	0.9 2970 10000 7400	.0 .8 0.8 2970 13000 9300
EUV NIL ML2 Data Volume[GB] Optical EUV NIL ML2	2.1 2220 1300 940 820	1.9 2580 1700 1200	1.7 2970 2100 1500	1.6 2970 2600 1900	1.5 2970 3300 2400	1.3 2970 4200 3000	1.2 2970 5200 3800	1.1 2970 6600 4700	2970 8300 5900	0.9 2970 10000 7400	.0 .8 0.8 2970 13000 9300

Panelists

Mask Writer Users

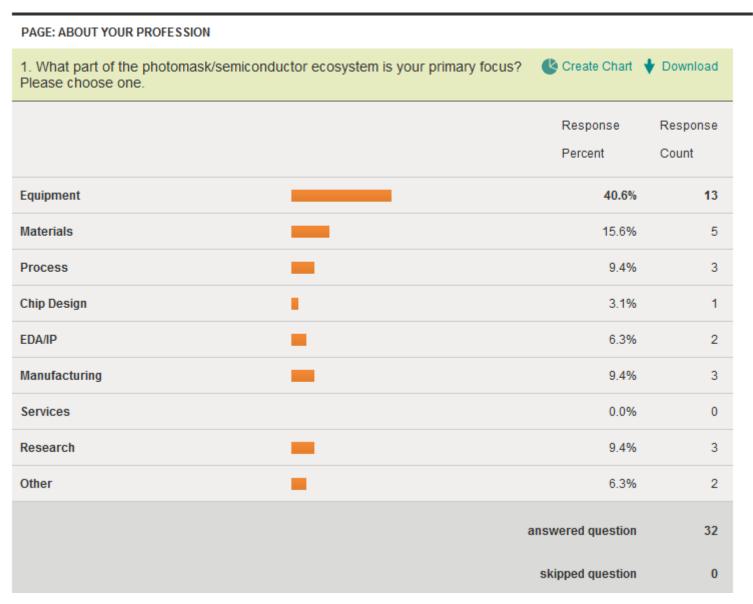
EDA vendors

Samsung Electronics	Photronics	D2S
Mr. Inkyun	Dr. Chris	Mr. Aki
Shin	Progler	Fujimura
Dr. Tor	Dr. Hans	Dr. Hiroshi
Sandstrom	Loeschner	Matsumoto

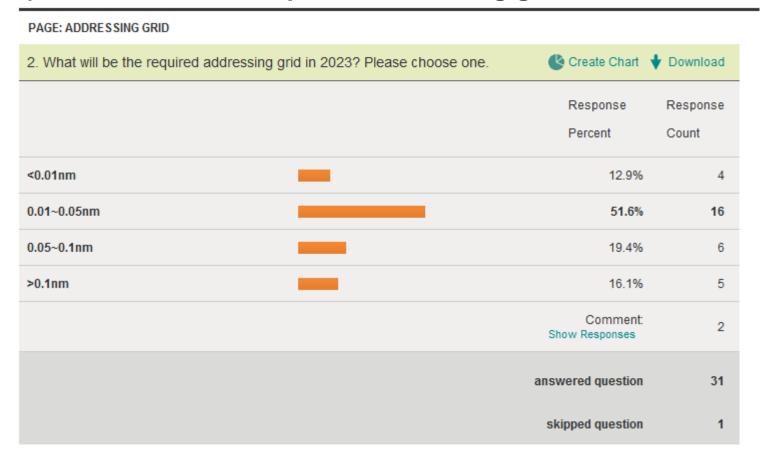
Mask Writer Makers	Micronic Mydata	IMS Nanofabrication	NuFlare
# of Beams	1M	256K	1
Address Grid	1.25nm	0.1nm	0.1nm
Gray Scale	64	241	64K

8 questions for future patterning technology

- Q1) (question about professional background)
- Q2) What will be the required addressing grid in 2023?
- Q3) What is the acceptable TAT for mask writing per one critical mask layer in 2023?
- Q4) What is the acceptable TAT for MDP per one critical mask layer in 2023?
- Q5) Which writing technology will be mostly used in mask writing of critical layers in 2023?
- Q6) Which lithography application will be supported by which mask writing technology the most?
- Q7) What is your preference for pattern data format?
- Q8) What is your opinion about pipelining MDP and writing?


Future mask patterning technologies in the next decade: searching for the best mix solution

PMJ2013 Panel Discussion Survey Result


PMJ2013 Panel Discussion Survey Result

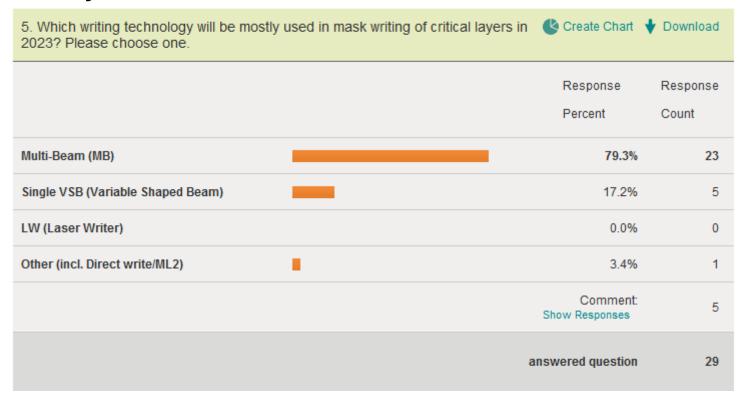
- Distributed to PMJ & BACUS program committee member
- Anonymous survey
- Total 32 people participated
- 8 questions + other comments

Q1) Question about professional background

Q2) What will be the required addressing grid in 2023

Comment: We should all agree on the digitized/gridded design based on the achievable LSB expression defined by process and tool capability

Q3) What is the acceptable TAT for mask writing per one critical mask layer in 2023?

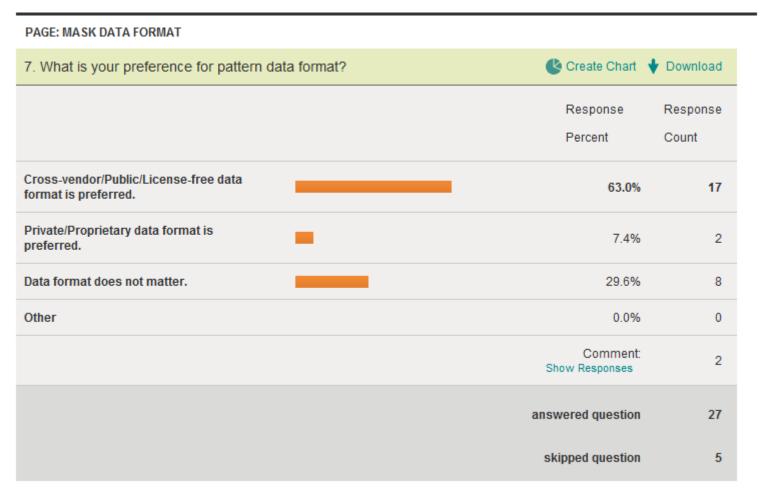

Comments:

- Target should be around 12 hours
- •Less than 10 hours is ideal. Over 10 hours but less than 1 day can be tolerated. Anything more than 1 day is crazy.
- Assume multi-beam system is in production.

Q4) What is the acceptable TAT for MDP per one critical mask layer in 2023?

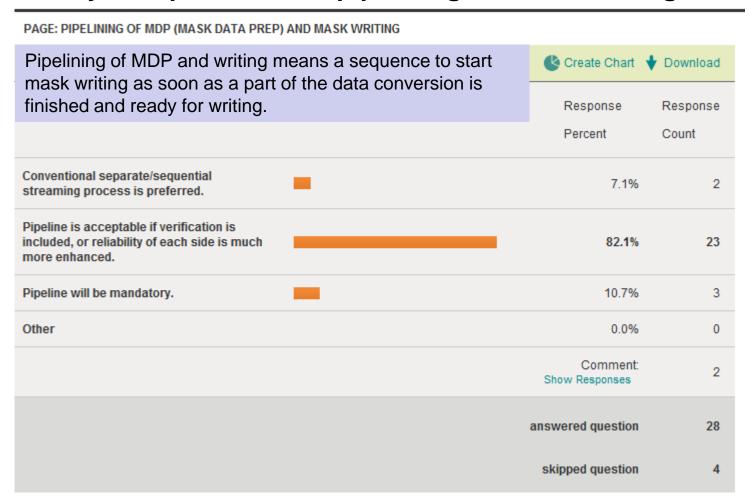
Q5) Which writing technology will be mostly used in mask writing of critical layers in 2023?

Comments:


- It hasn't been invented yet.
- •Multi-column is the only solution. It needs development from the level of reliable parts, but who will pay the cost?
- •I believe VSB with productivity enhancing technique, like model-based approximation, is the best enabling solution.

Q6) Which lithography application will be supported by which mask writing technology the most?

6. Which lithography application will be so technology the most?	Crea	te Chart	Download		
	МВ	Single VSB	LW	Other	Rating Count
ArF masks	53.6% (15)	39.3% (11)	7.1% (2)	0.0%	28
EUV masks	60.7% (17)	39.3% (11)	0.0%	0.0%	28
NIL masks	38.5% (10)	42.3% (11)	3.8% (1)	15.4% (4)	26
DSA masks	40.7% (11)	40.7% (11)	14.8% (4)	3.7% (1)	27
			C Show Res	omment: sponses	2
		ê	answered	question	28
			skipped	question	4


Comment: Are we really, really serious about DSA?

Q7) What is your preference for pattern data format?

Comment: Diversity of data format is a source of benefit for MDP companies

Q8) What is your opinion about pipelining MDP and writing?

Comment: Pipelining can be a viable technique if data prep behavior is predictable. It cannot be slower than predicted and be a bottleneck to writing.

Other comments

PAGE: THANK YOU!

9. If you have more opinions or suggestions, please share them with us.

Comments:

- •How fast MB could be delivered in 2023?. Compare to current VSB tool. How small beam blur is expected in 2023?
- •High resolution resist with lower dose requirements required for NIL especially if MB does not become available.

Timeline

- Presentation by Panelists (17:25 18:40)
 - 10 minute talk by each panelist
 - A couple of questions from the audience accepted after each panelist's presentation
- Open discussion (18:40 19:05)
- Summary (19:05 19:10)