

193i Needed to be Extended...and Extended

- Inverse Lithography Technology (ILT), Source-Mask Optimization (SMO), and Pixelated Masks invented
- The enabler is mask with small (assist) or/and complex features

Source: SPIE 8680-3 Source: SPIE7640-4 Source: SPIE6924-13

ILT : Biggest Challenge is Mask Writing

 Much better
DOF possible with unconstrained shapes

The base study on 350 nventional fractưfing is courtesy of Byung-Gook Kim, ${ }^{2}$, ${ }^{2}$ al., PMJ 2009
L. Pang, eBeam Initiative Workshop at PMJ 2015

Writing Complex Masks Is Possible: MB-MDP (Near Term) and MultiBeam (Long Term)

- MB-MDP benefits over conventional MDP:
- Model-based, better CDU control
- Utilizes overlapping shots to maximize shot contribution to the final mask shapes
- Less shot count and better mask fidelity

MB-MDP Enables ILT Today

 250 With MB-MDP

Much better DOF possible with unconstrained shapes

But Mask
Write
Times
Explode ${ }^{5}$
Mask Write Times do not explode with MB-MDP

Then the Question is:

Conventional MDP

Shot Number driven MB-MDP

$C D U$ driven MB-MDP

Mask Qualification Challenges

Requires
Mask features getting smaller

Mask features getting unintuitive \& complex

Pattern fidelity and dose margin getting worse

Higher resolution

Wafer printability
Free form source

Auto, fast, accurate dispositioning

Mask Inspection Tools are Adding Aerial Image Inspection Mode

KT Teron ${ }^{\text {TM }} 630$

Selectable imaging modes to provide the necessary signal-to-noise ratio (SNR) to ensure defect-free 1Xnm generation reticles, whether optical reticles with complex OPC or EUV reticles (Source: KT website)

Applied AERA ${ }^{\text {TM }} 4$

Designed to emulate a scanner, the Aera4 system delivers superior firsttime inspection success rate over other high-resolution inspection systems on advanced masks, including those with aggressive OPC, such as inverse lithography. (Source: KT website)

Is Optics-Based Aerial Image Inspection Enough? -Not Really

Looking for:

- Cross inspection tools
- More flexibility
- Free form source
- Lower cost

Simulation Can Provide Aerial Image from Mask Inspection Image

Simulation Can Also Provide Aerial Image from High Resolution SEM Image

Followed by Aerial Image based Defect Review and Dispositioning

Simulation and Aerial-based Defect Review ${ }_{2}{ }_{2} \mathrm{~S}$ Is Already in Production

Mask Defect Auto Disposition based on Aerial Image in Mask Production

Abstract

C.Y. Chen ${ }^{\text {a }}$, Laurent Tuo ${ }^{\text {a }}$, C. S. Yoo $^{\text {a }}$, Linyong Pang ${ }^{\text {b }}$, Danping Peng ${ }^{\text {b }}$, Jin Sun ${ }^{\text {b }}$ ${ }^{a}$ E-Beam Operation Division, Taiwan Semiconductor Manufacturing Company (TSMC), $25 \mathrm{Li}-\mathrm{Hsin}$ Rd. Hsinchu, Taiwan ${ }^{\mathrm{b}}$ Luminescent Technologies, Inc., 2471 East Bayshore

At the most advanced technology nodes, such as 45 nm and belou (SRAFs) are required. However, their use results in significan disposition more challenging than ever. In an attempt to mitigat that rely on hardware emulation and software simulation to obtain however, automatic mask disposition based on aerial image is sti final resist CD or contour, which are commonly used in lithograp automated mask defect disposition system that remedies these shi for mask production, works in both die-to-die and die-to-databas AIMS ${ }^{\mathrm{TM}}$ and aerial-image-based inline mask inspection tools. I plane CD variance. The system also connects to a post-OPC lith CD specs, which are then used in the mask defect disposition.

Ref: C. Y. Chen, et al., "Mask defect auto disposition based on aerial image in mask product", Proc. SPIE 7379,
Photomask and Next-Generation Lithography Mask Technology XVI, 73791F (May 11, 2009); doi:
10.1117/12.824292; http://dx.doi.org/10.1117/12.824292

Imagine the Simulation is 10X Faster

Then simulationbased will be very attractive

Scientific Computing Is Moving into GPU: Ride the Wave or ...

PERFORMANCE GAP CONTINUES TO GROW

Peak Double Precision FLOPS

Peak Memory Bandwidth

D2S Has Built 400TFLOPS Computational $\quad \mathrm{D}_{2} \mathrm{~S}$ Design Platform Using GPUs

- Could rank in the top 100 Super Computers in the Word (June, 2014)
- In production use
- Simulates the entire mask plane
- All standard parts, with built-in redundancy

Simulation-Based Solutions with GPU

Litho simulation using reconstructed mask

3D mask model

Higher resolution

Wafer printability
Free form source

Auto, fast, accurate dispositioning

With GPU, the Simulation-based Mask Review Applications are Endless

With GPU, Mask Hotspots Can Feed to Mask Inspection and Review

 Using Full Chip Model-Based Mask Verification

 Using Full Chip Model-Based Mask Verification}

- Hotspots due to

Fracture:

- Sliver
- Extensive overlap shots
- CD split
- Mask Hotspots
- Line-end shorting
- Necking, bridging
- EPE error
- Bad dose margin

With GPU, Rigorous M3D Simulation Becomes Real Time

Mask

Aerial image
2D
D2S Mask 3D >1000 times faster

Runtime (seconds)

With GPU, Deep Learning Can be Applied to Mask Defect Classification

With GPU accelerated deep leaning, the image classification accuracy is better than human now

Jen-Hsun Huang, CEO of NVIDIA, GPU Technology Conference, 2015

Isn't it Better to not Have so Many Mask Defects From the Beginning?

- Both Shot Number and CDU-driven MB-MDP are clearly more effective in reducing size variations.

Size 6 Size 5 Size 4 Size 3 Size 2 Size 1
Large
B.G. Kim, et al., "Improving CD Uniformity using MB-MDP for 14nm and beyond", BACUS, 2012
L. Pang, eBeam Initiative Workshop at PMJ 2015

Summary:
 Using GPUs, Complex Mask Shapes Prevail

- Mask makers will be facing complex masks soon
- Simulation-based mask inspection and review helps to solve challenges in mask defect dispositioning
- Scientific computing is moving to GPU
- GPU-accelerated simulation-based mask inspection and review is your best friend
- MB-MDP and Dose Modulation will offload mask inspection and review work

