The Latest Progress in Model-Based Mask Data Preparation

Linyong (Leo) Pang Bo Su D₂S, Inc.

L. Pang, The Latest Progress in Model-based Mask Data Preparation

1

eBeam Needs Proximity Correction

- At 20nm node, eBeam writing is no longer "faithful"
- Needs proximity correction, like OPC at 90/65nm
- Dose margin is the problem

< 50nm, Context is Critical

< 50nm, Context is Critical

Pictures enlarged to show contour

Model-Based MDP is the Answer

D₂S

- Above 50nm, context-independent, rules-based processing works well enough
- Below 50nm, context is critical
- If we can't push below 40nm, we leave the benefits of Moore's Law on the table
- Simulation-based mask processing is the answer

D₂S TrueModel is Reaching 1.5nm RMS, Qualified at World Leading Semi Companies

MB-MDP Has Right Approaches for both OPC and ILT Masks

OPCS2 = MPC+ Dose Modulation + Conventional MDP

ILT Adopted as the Way Forward

ILT expertise proliferated

2014 panel

Complex Masks Pose Challenges, in Particularly, Mask Writing

Long VSB write-times

Low accuracy due to proximity effect

Overlapping Shots = Reduced Shot Count

- = Better process margin
- = Better CDU
- = No mask-write time vs. mask-quality compromise

MB-MDP, Overlapped Shots Required with VSB D_{2S} for Complex Masks

- Conventional solution:
 - Geometry-based
 - Shots cover CAD layout without overlapping
 - More shot count and worse mask fidelity
- D₂S solution:
 - Model-based, better CDU control
 - Utilizes overlapping shots to maximize shot contribution to the final mask shapes
 - Less shot count and better mask fidelity

Complex Shapes are only Feasible with MB-MDP and Overlapped Shots

Benefits of MB-MDP Proven at Key Customer Sites

~50% CDU Improvement on 7nm OPC Mask using MB-MDP OPCS2

Is MB-MDP Run Time Ready for Production Use?

- Over 100X more computation than MB-OPC
- Mask scale 4X of wafer scale
 - Imagine calculation on every 1nm on wafer scale
- Requires optimization on fracturing
 Break the OPC pattern into shots
- Has to consider overlapped shots
- eBeam proximity effect has short (nm), mid, and long range (mm)

Scientific Computing Is Moving to GPU

Jen-Hsun Huang, CEO of NVIDIA, GPU Technology Conference, 2015

D₂S 400TFLOPS CDP Using GPUs Is In Production Use at Mask Shops

- 400 TFLOPS
- Simulates the entire mask plane
- All standard parts, with built-in redundancy
- 10th CDP being Installed this month

MB-MDP Run Time Improvement

Multi-Beam Mask Writer Will Need Simulation-Based Processing Even More

- Multi-beam mask writer is the ultimate answer for ILT
 - Write-time independent of mask complexity
 - Use slower resist
 - Smaller features
- It requires MB-MDP
 - Large data set to process
 - Needs dose modulation

H. Matsumoto, 2016 Introduction and recent results of Multi-beam mask writer MBM-1000, SPIE 2016 eBeam Initiative Luncheon Event

MB-MDP is Being Deployed in Production

- ILT is being deployed in production at the leading edge. Mask makers are faced with ILT masks
- Overlapped shots and MB-MDP enable VSB mask writer to write complex ILT masks
- GPU-accelerated MB-MDP can meet the speed requirement of mass production
- MB-MDP is being deployed in production for both OPC and ILT masks
- Multi-beam mask writer will require MB-MDP, too

